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SUMMARY

A robust method for solving the chemical non-equilibrium Navier–Stokes equations, including all of the
species conservation and energy production equations, is developed. The algorithm is embodied in a fully
coupled, implicit, large block structure. Van Leer flux splitting for inviscid terms and central differencing
for viscous terms in the explicit operators are applied in the numerical algorithm. The fully-coupled
system is solved implicitly and the bi-conjugate gradient stable (Bi-CGSTAB) method with a precondi-
tioner of incomplete lower–upper (LU)-factorization (ILU) is used for solving large block structure and
diagonal dominate matrix equations. The computations are performed for the hypersonic inflow over
blunt bodies including half cylinder, double ellipse and blunt nose. The adaptive grid constructed by
moving grid method is employed to capture the shock location. Computational results in the present
study are compared with other calculated data and exhibit good agreement. Convergence histories of the
mean flow variables and species equations demonstrate that the fast convergent rate can be achieved by
the preconditioned Bi-CGSTAB method. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computation of high speed flow with non-equilibrium chemistry and thermodynamics has
been an interesting subject in recent years. The large number of dependent variables and
additional species transport equations with large source term, and the disparate time scales
associated with the fluid motion and non-equilibrium chemistry and thermodynamics make the
corresponding equation set very stiff. Maximizing accuracy, efficiency, and robustness of the
numerical method is the first goal. In recent years, numerous investigators [1–6] derived flux
splitting methods for inviscid terms of the compressible flow equations for gases that are not
in chemical equilibrium. Usually, formulas are proposed so that the methods can be extended
to chemical non-equilibrium, by Steger–Warming [7] and Van Leer flux vector splittings [8],
and Roe flux difference splitting [9]. The major difficulty for developing the flux splitting
algorithm for real gas in chemical equilibrium and non-equilibrium is that the Euler equations
will not be homogeneous of degree one, as is the case for a perfect gas, which indicates that
the existing perfect gas flux split algorithm is not applicable. Formulas are derived by two
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approaches: ‘equivalent g ’ method and a more complicate flux splitting [2–6]. The ‘equivalent
g ’ method, first suggested by Grossman and Walters [1] for flow in chemical non-equilibrium,
was developed by Desideri [10], Shuen [11] and Mani [12], and is used in the present study.

For flow with very significant non-equilibrium effects and large thermal energy changes due
to heat release or absorption, all the equations are solved in a simultaneous, coupled manner.
Therefore, the solution algorithm needs to be devised with this large block structure. In
general, the implicit scheme can enlarge the integrating time step and be robust, but the
memory and CPU are considerable, especially for 3-D calculation. Palmer [13] designed a 3-D
explicit finite rate code to compute AFE vehicle flow in chemical non-equilibrium. The
necessary underrelaxation process was suggested because otherwise the CFL number may be
restricted by very stiff source terms and may be less than 0.0001. To accelerate the convergence
rate, many existing factored implicit algorithms are implemented for chemical non-equilibrium
flow, such as lower–upper (LU) [14,15], ADI [15], LU-SSOR [11], LU-SGS [16], diagonalized
ADI [12], etc. The source term of chemical production was treated implicitly to overcome the
stiff property. In relation to flux Jacobian for inviscid flux of transport equations, the source
term Jacobian matrix can be similarly derived [3]. Unfortunately, the source term Jacobian
matrix element has a broad value (i.e. the value may be positive or negative, the absolute value
may be very large or approach zero) and is not diagonal dominated. So the diagonal scheme
(for example, diagonalized ADI, LU-SGS, LU-SSOR, etc.) for chemical non-equilibrium flow
has been popular in recent years. The diagonal scheme eliminated the expense of inverting the
large block matrices that arise when species conservation equations are introduced. A
simplified approach to ‘diagonalize’ the source term Jacobian within the diagonalized implicit
algorithm framework has been implemented and tested by Imaly et al. [17]. These formulations
always add to the diagonal dominance of the implicit operator and thus will underrelax the
effects of the chemical source term. But these algorithms may exhibit poor convergence
behavior if the simplification of the source term Jacobian is not suitable. The non-diagonalized
LU algorithm designed by Shuen [14] displays very good convergent behavior, and apparently
is faster than the LU-SGS method for the same computational problem. Shuen [14] used the
Van Leer flux splitting for inviscid terms and central differencing for viscous terms in the
explicit operator, and Steger–Warming splitting LU approximate factorization for the implicit
operator. However, the LU approximate factorization induces the factorization error. Gnoffo
[18] used upwind-biased, point-implicit relaxation strategies to design the LAURA code for
viscous hypersonic flow. Candler and MacCormack [19] used an implicit Gauss–Seidel line
relaxation technique [20] to compute a two-dimensional hypersonic flow field that is ionized
and in thermal–chemical non-equilibrium. The relaxation method needs iterations to obtain
the solution of a large linear system and the problem of convergence needs to be resolved.

In recent years, the convergence has been greatly improved using the conjugate gradient
(CG) method [21]. Preconditioned conjugate gradient, and its generalizations for non-symmet-
ric systems such as Bi-CG [22], GCR [23] and the generalized minimal residual method
(GMRES) [24], have been employed for many CFD codes [25,26]. Furthermore, Venkatakrish-
nan [27] used them to obtain solutions of the compressible Navier–Stokes equations for
subsonic and transonic flows. Ajmani et al. [28] used the GMRES method of Saad and Schultz
[24] for transonic and hypersonic flow with fast convergence. It was found that the conjugate
gradient squared (CGS) method [29] was competitive in convergence acceleration with the
GMRES method and was economical in both storage requirement and computing time. The
bi-conjugate gradient stable (Bi-CGSTAB) method [30] exhibited a more stable convergence
behavior than the CGS method and less CPU time with the same convergence behavior rate
compared with the QMR [31] and TFQMR method [32]. The authors’ previous studies [33,34]
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have employed various Bi-CG variants to compute the transonic separated turbulent flow by
adopting higher order turbulence models which have the same problem of stiffness.

For the present study, the preconditioned Bi-CGSTAB method [30] is implemented to the
compressible Navier–Stokes solver with the non-equilibrium chemically reacting gas model.
Satisfactory convergence behavior for the test problems of a half cylinder, a double ellipse and
a blunt body will be demonstrated. In addition, Shuen’s method is slightly modified to solve
mean flow equations and species equations with five-species and 11-species chemical reaction
models [35,36] of dissociated air.

2. MATHEMATICAL MODEL

2.1. Go6erning equations

Two-dimensional Navier–Stokes and species transport equations for a chemically reacting
gas of Ns species can be formulated in curvilinear co-ordinate and written in non-dimensional
form as follows:
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x, y are the Cartesian co-ordinates in longitudinal and radial directions, j, h are the
transformed co-ordinates, and t is the time. rl, r2, . . . , rNs−1, rNs are the densities of each
species. So the mixture density is

r=r1+r2+ · · ·+rNs−1+rNs
(3)

and Yi�ri/r is the mass fraction for the ith species. u, 6 are the velocity components, r is the
static pressure and Et is the total energy. S1 to SNs−1

are the source terms for species due to
chemical reactions. Non-dimensionalized variables are:
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ã�2

, h=
h0

r̃�ã�2
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ã�2
, hi=

h0 i
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where e is the specific internal energy, h is the specific enthalphy, a is the sound speed, T is the
static temperature, m is the molecular viscosity, k is the thermal conductivity, Re�, is the
freestream Reynolds number, and Lref is reference length. The subscript i denotes the flow
property of ith species. Dim is the effective binary diffusivity of species i in the mixture.
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J=jxhy−jyhx, U=jxu+jy6, V=hxu+hy6

txx=
2
3

m(2ux−6y), tyy=
2
3

m(26x−uy), txy=m(uy+6x)

q; x=
�k̃�T0 �

m̃�ã�2
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2.2. Transport properties

The molecular viscosities of each species are calculated by the Blottner [37] formula:

m̃i=0.1 exp [(Ai ln T0 +Bi) ln T0 +Ci ], kg m−1 s−1. (4)

The unit of T0 is K, and Ai, Bi, Ci are Blottner coefficients [37]. Eucken’s formula [38] is used
to compute thermal conductivity:

k̃i=
m̃i Ru

Wi

�cp,i Wi

Ru

+
5
4
�

. (5)

The molecular viscosity and thermal conductivity of the gas mixture is calculated from Wilke’s
[39] law:
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where xi is molar fraction of each species, i.e.
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The effective diffusivity of species i in the gas mixture can be expressed by

Dim= (1−xi)
,� %
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j" i

xj/Dij
�

. (10)

The binary diffusivity Dij between species i and j is obtained through the use of the
Chapman–Enskog theory in conjunction with the Lennard–Jones intermolecular potential
energy functions [40].

2.3. Gas model

To close the system of Equation (1), the equation of state must be defined. The macroscopic
thermodynamic properties of the real gas are described by the general equation of state.

p=p(r, e, r1, r2, . . . , rNs−1). (11)

Figure 1. An 89×37 grid for double ellipse (original and adaptive grid).
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Figure 2. Pressure coefficients along the surface for double ellipse.

Since the total mass density is already included as an independent variable, only Ns−1 species
are independent for a chemical system of Ns species. If the intermolecular forces and the
volume occupied by molecules are assumed to be negligible, the gas mixture pressure p̃ may be
expressed as the sum of the partial pressure due to each species in the ideal gas relation:

p̃=RuT0 %
i

r̃i

Wi

, (12)

where Ru is the universal gas constant. The total internal energy of the reacting air can be
combined from the internal energy of each species. The internal energy per unit mass of species
i may be written as
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T0 +h0 f
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for monatomic species and

ẽi=
5
2

Ru

Wi
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for diatomic species. ẽvi is the vibration energy, and can be written as ẽvi= ẽvi(T)=Riu0 vi/
(exp(u0 vi/T0 )−1). Ri (=Ru/Wi) is the gas constant of each species, u0 vi is the characteristic
vibrational temperature [38] and h0 f

0 is the heat of formation of each species.
The internal energy of mixture of species ẽ(=�i=1

Ns Yiẽi) is a function of r̃, r̃i and T0 . If the
densities of species are known, the non-linear algebraic equation can be reduced to ẽ= ẽ(T)
only.
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The flux splitting formulation of the real gas mixture requires the definition of the speed of
sound ã, the specific heat ratio g and the derivatives of pressure with respect to other
independent variables [2,3]. The exact formulation of these derivative is quite complicated for
flows involving real gas with non-equilibrium chemistry. Present work employs the concept of

Figure 3. Temperature, Mach number, density and pressure contours for double ellipse.
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Figure 4. Convergent histories for double ellipse.

‘equivalent g ’ [1,10] which is in a much simpler formulation. The specific heat ratio g is defined
by 1+ p̃/(r̃ẽ) and the equivalent sound speed ã2 is equal to gp̃/r̃ in this method.

2.4. Chemistry model

For a set of NR elementary reactions involving Ns species, the rate equations can be written
in the general form

%
Ns
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n %mj njl %
Ns

j=1

n¦mj nj, m=1, 2, . . . , NR, (15)

where 6%mj, 6¦mj are the stoichiometric coefficients for species j appearing as a reactant in the mth
forward and backward reactions respectively, and nj is the molar concentration for species j
(nj=rj/Wj). Also, kf,m, kb,m are the forward and backward rate constants for the mth reaction
step. kf,m, kb,m generally are only the function of temperature. The rate of change of molar
concentration of species j by reaction step m is
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The total rate of change of species densities of species j is
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It is the source term for species j due to chemical reactions.

2.4.1. Fi6e-species model. In this study, three chemical reaction models are considered. The
first is the five-species model which includes five species (N, O, NO, O2, N2) and 17 reactions
for the dissociation and recombination of air. The forward reaction rate constants for this
model are provided by Dunn and Kang [35], except those for the ions and free electrons. The
equilibrium rate constants kc,m are given in Vincenti & Kruger [38]. The backward rate
constants kb,m can be evaluated by kb,m=kf,m/kc,m.

The five elementary chemical reactions of the five-species model in this study are

reaction 1: N2+Ml2N+M

reaction 2: O2+Ml2O+M

reaction 3: NO+MlN+O+M

reaction 4: N2+OlNO+N

reaction 5: NO+OlO2+N (18)

Figure 5. A 91×61 grid for half cylinder.
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Figure 6. Temperature, Mach number, density and pressure contours for flow over a half cylinder by the five-species
model.

The impacting body labelled M can be any one of the five species.

2.4.2. Ele6en-species model. The 11-species model proposed by Park [36] utilizes 11 species
N, O, NO, O2, N2, N+, O+, NO+, O2

+, N2
+, e−, with 47 reactions [36]. The rate constant is

also given by Park [36].

2.4.3. Equilibrium model. In the equilibrium model, the air is composed of five species
(N, O, NO, O2, N2) and three independent equilibrium equations are involved
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The law of mass action is thus expressed as follows:
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where kc,N2
, kc,O2

, kc,NO are the function of temperature and are given in Reference [38]. The
mass fractions satisfy two additional algebraic equations:

YN+YO+YNO+YO2
+YN2

=1 (21)

79
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+
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WNO

+
2YO2

WO2

�
=21
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+
YNO

WNO

+
2YN2

WN2

�
. (22)

From Equation (22), the ratio of oxygen atoms and nitrogen atoms is a constant (i.e. 21:79).
The mass fractions are obtained by Equations (20)–(22).

3. NUMERICAL ALGORITHM

3.1. Spatial differencing

The difference equations are formulated by the finite volume approach in the fully implicit
form from Equation (1):

Figure 7. Major species mass fraction contours for flow over a half cylinder by the five-species model.
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Figure 8. Mass fraction contours for ions and electrons for flow over a half cylinder by the 11-species model.
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Van Leer flux vector splitting scheme [3] is applied for the differencing of the convective term
and the central difference scheme is used for the viscous term. The standard splitting in the
j-direction is:

E( i+1/2, j=E( i+1/2, j
+ +E( i+1/2, j

− . (24)

Defining Mj (ujx+6jy)/(a
jx
2 +jy

2) gives the local Mach number. For local Mach number
greater than 1.0, E( i+1/2, j

+ =E( i+1/2, j, E( i+1/2, j
− =0. For a local Mach number less than −1.0,

E( i+1/2, j
− =E( i+1/2, j, E( i+1/2, j

+ =0. In the local subsonic region, Mj
2B1.

The split mass, momentum, energy and concentration fluxes are:
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The split fluxes in the h-direction can be similarly obtained. The flow variable in the cell
interface i+1/2 is evaluated by second-order MUSCL approach. Second-order Van Leer
smooth limiter is adopted to switch smoothly from second- to first-order accuracy in regions
of strong gradients.

3.2. Time integration

In the present study, all of the equations, including chemical species transport equations, are
simultaneously solved. The implicit unfactored backward Euler scheme for the full Navier–
Stokes equations and chemically reacting species transport equations which use upwind
differencing in the j- and h-direction can be written in the form [20]:�
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where A. 9, B. 9 are the positive and negative splitting Jacobian matrices in the j- and
h-directions. Generally, in order to maintain the stability of the thin-layer viscous term, the
split Jacobian matrices A. 9, B. 9 are modified as follows which was originally suggested by
Coakley [41],

A. 9=R. j(l. j
99 n̄jI. )R. j

9; B. 9=R. h(l. h
99 n̄hI. )R. h

9; (27)

n̄j=
2gM�(m/r)�9a j �2

(Re�Pr)
. (28)

The source term S. can be very large and cause the equation set to be stiff. To mitigate the stiff
problem, the chemical source terms are treated implicitly. The complete derivation of the
source term Jacobian matrix G. can be found in [3]. The matrix G. (=(S. /(Q. ) has (Ns+3)×4
non-zero elements and the values of these elements may be positive or negative and very large
if the time step is large enough. It is possible that the matrix G. diminishes the diagonal values

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 267–291 (1998)



HERNG LIN AND CHING-CHANG CHIENG280

of the LHS matrix system and the total matrix system may be unstable. In the present
study, a special integration time step for the chemical reaction source term (called Dtchem) is
employed. Dtchem is defined by CFLchem ·DtCFL,chem where DtCFL,chem is the approximate
CFL-like time scale for total reactions and is defined below:

DtCFL,chem=1.0/max(�G. ij �). (29)

CFLchem ranges between 3 and 20. Therefore, the ratio of Dtchem and Dt can be selected
with the range of 0.01–1.

The matrix Equation (26) can be replaced by the non-factored form list below:

A( i, j(DQ)i−1, j+C( i, j(DQ)i+1, j+E( i, j(DQ)i, j−1+F( i, j(DQ)i, j−1+D( i, j(DQ)i, j=B( i, j (30)

D( i, j=
� Dt

Voli, j

�
(A. i+1/2, j

+ −A. i−1/2, j
− +B. i, j+1/2

+ −B. i, j−1/2
− )+I+ (Dt)D. i, j (31)

A( i, j= −
� Dt

Voli, j

�
A. 1−1/2, j

+ , C( i, j= −
� Dt

Voli, j

�
A. 1+1/2, j

− ,

B( i, j=
RHS of Equation (26)

Voli, j

,

E( i, j= −
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Voli, j

�
B. i, j−1/2

− , F( i, j= −
� Dt

Voli, j

�
B. i, j+1/2

− .

Equation (30) forms a block pentadiagonal matrix system of equations, MX=B, where M
is a (NI ·NJ · (Ns+3))× (NI ·NJ · (Ns+3)) banded matrix, X and B are (NI ·NJ · (Ns+3))
column matrices. The coefficient matrix A( i, j, C( i, j, D( i, j, E( i, j, F( i, j are (Ns+3)× (Ns+3) square
matrices and the right hand side matrix B( i, j is a (Ns+3)×1 vector. The unknown (DQ)i, j

is conventionally evaluated using block Gauss–Seidel methods with slow convergence. Vari-
ant Bi-CG methods were developed in recent years, i.e. CGS [29], Bi-CGSTAB [30], QMR
[31] and TFQMR [32]. These methods can significantly simplify the programming and
speed up convergence.

The convergence rate of the conjugate gradient methods depends on the eigenvalue
distribution of the coefficient matrix. Instead of solving the original linear system MX=B,
the preconditioned conjugate gradient method solves a related linear system, K−1MX=
K−1B. The matrix production of K−1M has a more favorable eigenspectrum distribution
than M, i.e. the eigenvalues are more clustered. The choice of the preconditioner in the
present study is based on incomplete factorization of matrix M which consists of a block
lower triangular matrix LM a block upper triangular matrix UM, and a block diagonal
matrix DM, satisfying M= (LM+DM)DM

−1(UM+DM)+EM, where EM is the deviation ma-
trix. The deviation matrix EM is often very sparse itself. This factorization method is called
incomplete line LU factorization, and is denoted by ILU. Preconditioning with ILU
is carried out by choosing K= (LM+DM)DM

−1(UM+DM) [42], where DM is slightly modi-
fied.

The algorithm of Bi-CGSTAB methods with ILU as a preconditioner is applied in the
present work and described in detail in Reference [30]. The application of the present
method implies the solution of K−1MX=K−1B, but the LU methods solve KX=B.

However, the numerical stability is sustained with difficulty due to stiff source terms of
chemical reactions. Some relaxation procedures for integrating species transport equations
are needed, as Palmer [13] suggested.
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3.3. Testing problems and boundary/initial conditions

Numerical computations have been performed for hypersonic flow past (1) a double ellipse
body at a 30° angle of attack for the freestream condition of M�=8.15, p�=1 atm, T�=300
K and Re�=8.8×106 [43]; (2) a half cylinder at a zero angle of attack for the freestream
condition of M�=7.0, p�=1 atm, T�=600 K and Re�=6×106 [14]; (3) a blunt body
made of a cylindrical portion followed by planes with a 15° inclination [10]. The freestream
conditions are taken to correspond approximately to the standard atmosphere at the altitude
of 75 km (M�=25.0, p�=2.52 Pa, T�=205.3 K, Re�=1947). Half-C type grids are
generated by the hyperbolic grid-generation scheme. On the j=1 and j=jmax boundary, the
supersonic outflow condition is employed. On h=hmax boundary, supersonic inflow condition
is specified. An adiabatic wall boundary is applied on the h=1 boundary, and the no-slip
condition and zero normal pressure and concentration gradient are imposed on the wall.

Uniform flow fields of freestream conditions for mean flow equations and species are
assumed to be in the equilibrium state. For the five-species model calculation, the equilibrium
species fractions of freestream conditions can be solved from the chemical rate equations. For
11-species model computation, The mass fractions of N2 and O2 are initially set to 0.7667 and
0.2333, and the mass fractions of other species are assumed to be very small (i.e. 10−15).

3.4. Mesh adaptation

The mesh must be refined locally in order to increase the spatial resolution in the nearby
region, because the shock induces the dissociation phenomena. The moving grid method of
Dwyer [44,45] is employed in the present study. The mathematical expression for the technique
is, for any interval

WiDXi=constant,

where Wi is the weighting function of the ith interval. As the value of weighting function
becomes greater, the corresponding interval becomes smaller. Thus, by constructing the
weighting function according to the gradient of the dependent variables, the grid can cluster
near the region where the solution variation is large. W is assumed as 1+�k bk �(fk/(s �, where
fk ’s are dependent variables and bk ’s are the ‘normalizing factors’. For this study, the mesh
adaptation is executed only in the h-direction, and a smoothing procedure is employed to
produce regular meshes.

4. RESULTS AND DISCUSSIONS

The first testing problem is hypersonic flow past a double ellipse blunt body. The configuration
of the body and grid is shown in Figure 1. The grid is constructed as a 89×37 half-C grid and
the first grid line in the normal direction is at a distance 0.0005 off the wall, (the maximum
diameter of the double ellipse is 0.06). The restructured grid is constructed by clustering the
grid line in the h-direction at the bow shock region and the attach shock region, near the
discontinuous location on the leeside surface. The restructure, based on the converged solution
of the flowfield, employed the original grid (iteration step=2500). The solution is then
interpolated onto the new adaptive grid and the time integration for this case proceeds. The
surface pressure coefficients computed along windward and leeward surface are plotted in
Figure 2. The computed pressure distribution on the leeward side of the present method is
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compared with that of Khalfdlch [42]. The shock is obvious at the location X= −0.03. The
adaptive grid solution yields a better resolution than the original grid solution. The computed
distribution on the windward side is 5% lower than Khalfdlch’s prediction. The temperature,
Mach number, density and pressure contours (Figure 3) indicate that the bow shock resolution
is apparently improved by mesh adaptation, especially in the leeside region. The calculated
shock position in the present study gives the same result as Esser [42].

Figure 9. Distributions of physical quantities along the stagnation streamline for flow over a half cylinder.
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Table 1. The comparisons of stagnation properties for flow past a half cylinder

Pre. (11-species)Pre. (five-species)Stagnation properties Shuen

63.0p (atm) 65.0 65.0
426042214224T (K)
0.00024YN 0.000244 0.000243
0.065YO 0.0608 0.0608

0.102 0.102YNO 0.102
0.118 0.121YO2

0.118

The convergent histories are plotted in Figure 4. The L2 residuals of mean flow and
maximum average residuals for all species equations used the new adaptive grid, which can be
reduced smoothly by five and six orders, within 5500 iteration numbers (i.e. from iteration step
2500 to 8000). The maximum CFL number is 10.0. The definition of ‘maximum average
residual’ is the summation of normalized maximum residual of all species. The convergent
characteristics of the species equations can be displayed by this residual.

The second testing problem is a hypersonic flow past a half cylinder. The 91×61 grid
network is shown in Figure 5. The first grid line in the normal direction is at a distance 0.0015
D off the wall. Five-species and 11-species chemical reaction models of air dissociation are
employed. The calculations by the five-species model repeated the work of Shuen [14]. The

Figure 10. L2 residuals of mean flow equations by different chemical reaction models for flow over a half cylinder.
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Figure 11. A 45×23 original grid and four 45×43 adaptive grids for a 2-D blunt body.
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Figure 12. Temperature contours for flow over a 2-D blunt body by ideal gas and three chemical reaction models.

major difference between the present work and Shuen’s is the formulation of flux vector
splitting. Shuen’s method requires the evaluation for frozen sound speed and pressure
derivatives pe, pr and pri, but the present work employed the simplified ‘equivalent g and sound
speed’ formulations. The present results of the five-species model are almost identical to those
of Shuen [14].

Figure 6 plots the contours of density, Mach number, pressure, and temperature by the
five-species chemical reaction model. It can be seen that the temperature contours are very
similar to those of Shuen (see Reference [14], Figure 1). The stagnation properties of
temperature and pressure of this test case are obtained as 4224 K and 65.0 atm in the present
computation, while Shuen found values of 4260 K and 63 atm.

Figure 7 shows the mass fraction contours of species N, O, NO and O2 by the five-species
chemical reaction model. The contour maps are very similar to those of Shuen (see Reference
[14], Figure 2). The computed mass fractions of these four species at the stagnation point by
the present computation are 0.000244, 0.0608, 0.102 and 0.118, and the values found by Shuen
are 0.00024, 0.065, 0.102 and 0.121. The maximum difference is 6%. The contours of density,
Mach number, pressure, temperature and the mass fraction of species N, O, NO, O2 by the
11-species chemical reaction model are very similar to those by the five-species model. In order
to reduce the length of the paper, these contours are not shown. The mass fraction contours
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of ions N2
+, O2

+, NO+, N+, O+ and electron e− are shown in Figure 8. The maximum mass
fraction of these six species is of the order 10−7. It implies that electrons and ions are
generated at the bow shock.

Figure 9 compares the temperature, pressure and density obtained by five-species and
11-species models on the stagnation streamline. It shows that the temperature, pressure and
density after the bow shock and the stand-off distance are almost identical for both models. It
indicates the rare ionization due to the low peak temperature of 4226 K. The detailed
properties at the stagnation point are listed in Table 1.

The convergence histories are illustrated in Figure 10. The L2 residual for mean flow
equations can be reduced by seven orders for both reaction models within 3600 iteration steps.
The maximum CFL number used for both case is set to be 40. The code efficiency is similar
to Shuen’s work [14].

The third test case is the flow past a cylindrical blunt body with a Mach number of 25. The
45×23 grid (Figure 11), with minimum spacing of 0.005 D in the normal direction, is used to

Figure 13. Distributions of physical quantities along the stagnation streamline for flow over a 2-D blunt body.
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Figure 14. Distributions of mass fractions of major species along the stagnation streamline for flow over a 2-D blunt
body.
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Figure 15. Distributions of molar fractions of ions and electrons along the stagnation streamline for flow over a 2-D
blunt body.

obtain the original coarse-grid solution. Next, the fine adaptive grid with grid nodes of 45×43
is constructed (Figure 11). The computations are carried out using this restructured grid from
a time of zero. Four reaction models are employed for this problem: five-species and 11 species
non-equilibrium reaction models, equilibrium model and ideal gas model. The iso-temperature
plot is shown in Figure 12. The ideal gas model calculation gives the highest stagnation
temperature 25841 K. This value is approaches the value obtained from the simple formula for
stagnation property, i.e. Tstag=T�(1+0.2M�

2 )=25868 K. The equilibrium model gives the
lowest stagnation temperature, i.e. 5794 K, and the temperature is almost constant in the
region between the blunt nose and bow shock. The contour maps and the shock stand-off
distance are similar for both non-equilibrium models, the stagnation temperature by 11-species
model (9958 K) is slightly higher than that of the five-species model (9519 K). Although the
mesh adaptation technique is included, the shock resolutions for these reaction models are not
sharp because the viscous effect is apparent for the freestream Reynolds number of 1947.

The stand-off distances by four models can be measured as 0.16R, 0.34R, 0.34R and 0.54R
from Figure 13 for equilibrium, five-species and 11-species non-equilibrium and ideal gas
model respectively. The peak temperatures behind the shock are 17729 K for five-species and
17404 K for 11-species non-equilibrium model. The temperature is reduced gradually to a
stagnation temperature which is higher than those of equilibrium and the five-species non-equi-
librium model. The peak pressure is almost the same for three models. The mass fractions of
the major constituents of the gas on the stagnation streamline are plotted in Figure 14. These
plots illustrate the degree of chemical non-equilibrium in the flow field for these models. For
the equilibrium model, the dissociation of N2 and O2 is sharply behind the bow shock, but for
the non-equilibrium reaction models, the dissociation cannot proceed as rapidly when the bow
shock is formed and the temperature behind the shock rises. The mass fraction of NO behind
the bow shock exhibits the maximum difference for both non-equilibrium reaction models. The
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mass fraction of NO which is increased at the bow shock for the five-species model is
apparently larger than that of 11-species models, because the 11-species non-equilibrium model
includes additive ionization reactions but the five-species does not. The differences in mass
fraction NO for both non-equilibrium models are due to ionization process. Figure 15 is a plot
of the molar concentration of the ions and electrons on the stagnation streamline.

The convergent histories for mean flow and species equations are plotted in Figure 16. The
L2 residual for mean flow equations can be reduced by five orders for three reaction models
within 5000 iteration steps. The local time step is adopted and the maximum reference time
step value is set to be 0.001 for the adaptive mesh. The 11-species non-equilibrium model
displays the slowest convergent rate of L2 residual of species equations.

5. CONCLUSION

A numerical program for solving the non-equilibrium Navier–Stokes equation is proposed and
satisfactorily developed. The method is based on a finite volume, Van Leer’s flux vector
splitting spatial discretization, and is integrated by an implicit unfactored method with
preconditioning Bi-CGSTAB algorithm matrix solvers. Five-species and 11-species air dissoci-
ation chemical models, as well as ideal gas model and equilibrium gas model are included in
the present work. The test cases demonstrate the good shock-capturing capability as well as the
robustness of the convergence, especially through the use of the adaptive grid.

Figure 16. L2 residuals of mean flow equations by different chemical reaction models for flow over a 2-D blunt body.
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